Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hot flow anomalies (HFAs) and foreshock bubbles (FBs) are two types of transient phenomena characterized by flow deflected and hot cores bounded by one or two compressional boundaries in the foreshock. Using conjunction observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, we present an MHD HFA with a core filled with magnetosheath material around the bow shock and a typical kinetic FB associated with foreshock ions upstream of the bow shock, occurring simultaneously under the same solar wind/interplanetary magnetic field (IMF) conditions. The displacements of the bow shock moving back and forth along the sun-earth line are observed. Electron energy shows enhancements from ∼50 keV in the FB to ∼100 keV in the HFA core, suggesting additional acceleration process across the bow shock within the transient structure. The magnetosheath response of an HFA core-like structure with particle heating and electron acceleration is observed by the Magnetospheric Multiscale (MMS) mission. Ultralow frequency waves in the magnetosphere modulating cold ion energy are identified by THEMIS, driven by these transient structures. Our study improves our understanding of foreshock transients and suggests that single spacecraft observations are insufficient to reveal the whole picture of foreshock transients, leading to an underestimation of their impacts (e.g., particle acceleration energy and spatial scale of disturbances).more » « less
-
Abstract Hot flow anomalies are ion kinetic phenomena that play an important role in geoeffects and particle acceleration. They form due to the currents driven by demagnetized foreshock ions around a tangential discontinuity (TD). To understand the profile of such currents around a TD with foreshock ions on both sides, we use 2.5‐D local hybrid simulations of TDs, interacting with a planar shock with various shock geometries. We find that the electric field direction relative to the TD plane provides information about how the foreshock ion‐driven currents affect the magnetic field around the TD. For TDs embedded in the quasi‐parallel shock on both sides, the foreshock ions from one side of TD can cross it determining the current profile on the other side. In contrast, for TDs embedded in the quasi‐perpendicular shock, sheath‐leaked ions enter the TD and determine the current profile. We find that the foreshock ultra‐low frequency waves can periodically modulate how foreshock ions interact with the TD and thus the current profile. Studying the effects of various magnetic field configurations allows us to build a more comprehensive model of hot flow anomalie formation.more » « less
An official website of the United States government
